CB.06. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
CB.07. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
CB.08. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
CB.09. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
CB.10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
CG01.- Saber aplicar la teoría a la práctica.
CG02.- Aplicar los conocimientos adquiridos y desarrollar la capacidad de plantear nuevas hipótesis.
CG03.- Aprender a analizar, interpretar y comunicar las conclusiones.
CG04.- Saber buscar y seleccionar fuentes impresas y digitales en las lenguas relevantes para el ámbito científico.
CG05.- Capacidad de análisis crítico y de expresión escrita, oral y visual.
CG06.- Desarrollar la capacidad de organizar, gestionar y planificar.
CG07.- Desarrollar habilidades de aprendizaje que les permitan continuar estudiando de forma individual.
CG08.-Adquirir una base sólida de conocimiento científico de base que permita una capacidad de agilidad intelectual.
CG09.-Adquirir un conocimiento profundo de técnicas en diversos campos de investigación y aplicación de la Biología.
CG10.- Desarrollar capacidades para aplicar conocimientos a entornos nuevos, especialmente en contextos multidisciplinares.
CG11.- Desarrollar la curiosidad científica, de la iniciativa y la creatividad.
CG12.- Desarrollar las capacidades de trabajo en equipo, enriquecidas por la pluridisciplinariedad. Adquirir capacidad de difusión y divulgación de ideas en contextos tanto académicos como no especializado.
CT1.- Que los estudiantes adquieran capacidad para promover el progreso y desarrollar y fomentar el espíritu emprendedor.
CT2.- Que los estudiantes adquieran actitudes y capacidad para fomentar y garantizar el respeto a los Derechos Humanos y a los principios de accesibilidad universal, igualdad, no discriminación y los valores democráticos y de la cultura de la paz.
CE1.-Conocer la estructura y función celular. Biomoléculas. Definir la estructura y función de las proteínas y describir las bases bioquímicas y moleculares de su plegamiento, tráfico intracelular, modificación post-traduccional y recambio
CE2.-Demostrar que comprende y aplica los mecanismos de catálisis biológica basados en la estructura de los catalizadores biológicos y las reacciones químicas.
CE3.-Describir las rutas metabólicas, sus interconexiones y su significado fisiológico, así como comprender los mecanismos que regulan su actividad para satisfacer las demandas fisiológicas.
CE4.- Comprender las técnicas principales de investigación en sistemas biológicos: métodos de separación y caracterización de biomoléculas, cultivos celulares, técnicas de DNA y proteínas recombinantes, técnicas inmunológicas, técnicas de microscopia...
CE5.- Comprender las metodologías analíticas para el ensayo de la actividad biológica de los componentes celulares, en especial enzimas.
CE6-Comprender los conceptos básicos y procedimientos propios de la Genética Molecular.
CE7.-Resolver problemas genéticos.
CE8.-Diseñar experimentos genéticos.
CE9.-Analizar, interpretar, valorar, discutir y comunicar los datos procedentes de los experimentos genéticos.
CE10.- Manejar correctamente el instrumental habitual en un laboratorio de genética.
CE11.-Conocer los principios básicos acerca de la estructura y función de las células y de las técnicas básicas para su estudio.
CE12.-Conocer los procesos e interacciones que se establecen entre los distintos compartimentos celulares.
CE13.-Conocer los principios básicos sobre el ciclo celular eucariota.
CE14.-Comprender los procesos de comunicación entre las células y los componentes extracelulares que conducen al establecimiento de una estructura tisular.
CE15.-Aprender el uso y manejo del Microscopio óptico.
CE16.-Adquirir capacidad de análisis y diagnóstico de imágenes microscópicas ópticas y electrónicas.
CE17.- Adquirir los conocimientos básicos sobre la biología y estructura de la célula que permitan su estudio cuantitativo.
CE18.- Conocer que es la fisiología. Comprender el concepto de homeostasis, los sistemas de retroalimentación por lo que se regulan los procesos fisiológicos y los diferentes niveles de estudio de dichos procesos.
CE-19. Conocer los procesos básicos de la fisiología celular: trasporte a través de la membrana, potencial de membrana y potencial de acción.
CE20.- Comprender las funciones, procesos básicos y la regulación de cada uno de los sistemas fisiológicos, así como la interacción entre estos.
CE21.- Distinguir, a nivel práctico, las distintas estructuras y órganos de los sistemas estudiados mediante la utilización de modelos anatómicos.
CE22.- Adquirir una formación fundamental en las técnicas matemático/computacionales aplicadas a la bioinformática y la modelización de sistemas biológicos.
CE23.- Adquirir una visión global sobre la bioinformática y la biología de sistemas.
CE24.- Utilizar sistemas operativos, programas y herramientas de uso común en biología de sistemas.
CE25.- Conocimiento de las distintas técnicas de secuenciación masiva para la obtención de genomas y metagenomas.
CE26-. Conocimiento de los distintos algoritmos y protocolos de análisis y comparación de datos genómicos y metagenómicos de secuenciación masiva, así como la interpretación de los resultados.
CE27.- Habilidades prácticas para el uso de las distintas herramientas informáticas para el procesamiento, análisis e integración de datos genómicos y metagenómicos de secuenciación masiva.
CE28.- Conocimiento y habilidades prácticas de uso de las distintas bases de datos genómicos y metagenómicos.
CE29.- Capacidad de planificación de un estudio genómico y metagenómico de una comunidad microbiana (recogida de muestra, secuenciación y análisis).
CE30.- Conocimiento de las distintas técnicas de altas prestaciones para la medición del transcriptoma y el epigenoma.
CE31.- Conocimiento y habilidades prácticas de uso de las distintas bases de datos transcriptómicos y epigenómicos.
CE32.- Conocimiento de los distintos algoritmos y protocolos de análisis e integración de cantidades masivas de datos transcriptómicos y epigenómicos.
CE33.- Capacidad de planificación de un estudio transcriptómico y epigenómico (recogida de muestras, secuenciación y análisis).
CE34.- Habilidades prácticas para el uso de las distintas herramientas software para el procesamiento, análisis e integración de cantidades masivas de datos transcriptómicos y epigenómicos.
CE35.- Conocimiento de los métodos estadísticos para el análisis integrativo de datos ómicos.
CE36.- Conocimiento de lenguajes de programación estadísticos usados en el análisis integrativo de datos ómicos.
CE37.- Habilidades prácticas para el uso de las distintas herramientas software para la realización de análisis integrativo de datos ómicos en bioinformática y biología de sistemas.
CE38.- Adquirir una formación fundamental en las técnicas estadísticas para el el análisis integrado de datos ómicos.
CE39.- Adquirir una formación multidisciplinar de proceso de I+D+i (investigación, desarrollo e innovación).
CE40.- Adquirir una visión global y destreza en el uso de los métodos estadísticos de interés en bioinformática y para el análisis integrado de datos ómicos.
CE41.- Poseer las habilidades estadísticas e informáticas para obtener, analizar, interpretar e integrar datos ómicos, y para entender los modelos y métodos estadísticos de integración aplicados.
CE42.- Ser capaz de analizar y representar gráficamente datos ómicos, interpretar los resultados que resulten de su análisis integrativo y presentarlos en un formato adecuado para un trabajo científico.
CE43.- Aprender a planificar e interpretar los resultados de los análisis de experimentos ómicos desde un punto de vista integrado.
CE44.- Conocimiento de los fundamentos y conceptos básicos de los sistemas de ecuaciones diferenciales usados en modelización de sistemas biológicos
CE45.- Conocimiento de algoritmos para la aproximación numérica de soluciones de sistemas de ecuaciones diferenciales.
CE46.- Habilidades prácticas para el uso de las distintas herramientas de software para la especificación, simulación y análisis de modelos basados en ecuaciones diferenciales.
CE47.- Conocimiento de los fundamentos y conceptos básicos de los sistemas multiagentes en modelización de sistemas biológicos.
CE48.- Habilidades prácticas para el uso de las distintas herramientas de software para la especificación, simulación y análisis de modelos basados en sistemas multiagentes.
CE49.- Conocimiento de los fundamentos y conceptos básicos de teoría de redes así como habilidades prácticas para el uso de las distintas herramientas software genéricas para el análisis y visualización de redes.
CE50.- Conocimiento de los algoritmos y protocolos para la reconstrucción de redes transcripcionales y redes de co-expresión génica a partir del procesamiento de datos transcriptómicos y epigenómicos.
CE51.- Habilidades prácticas para el uso de las distintas herramientas software específicas para la reconstrucción de redes transcripcionales y redes de co-expresión génica.
CE52.- Conocer la metodología para la reconstrucción de redes metabólicas a escala genómica.
CE53.- Conocer los principios matemáticos para la obtención de modelos metabólicos.
CE54.- Conocer y aplicar los principales métodos y herramientas y computacionales para el análisis de modelos metabólicos
CE55.- Realizar predicciones in silico para analizar el fenotipo metabólico mediante MATLAB (CobraToolbox)
CE56.- Adquirir la formación necesaria para utilizar el análisis de redes basado en restricciones en diferentes aplicaciones
CE57.- Conocer los fundamentos y conceptos básicos de la ingeniería metabólica y biología sintética para su aplicación en la mejora de cepas.
CE58.- Conocer las principales estrategias de modificación genética utilizadas en ingeniería metabólica para la optimización de cepas.
CE59.- Ampliar y aplicar el conocimiento sobre análisis de modelos metabólicos a escala genómica para la predicción de fenotipos mejorados.
CE60.- Conocer el ciclo de especificación, diseño e implementación guiado por modelos matemático/computacionales de componentes, partes y sistemas en biología sintética.