Manuel D. Contreras;Rodriguez-Piazza, Luis:
Average radial integrability spaces of analytic functions. Journal of Functional Analysis. 2022. Vol: 282. Núm: 1. 10.1016/j.jfa.2021.109262.
Aguilar, Tanausú;Manuel D. Contreras;Rodriguez-Piazza, Luis:
Average radial integrability spaces of analytic functions. Journal of Functional Analysis. 2022. Vol: 282. Núm: 1. 10.1016/j.jfa.2021.109262.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Compactification and decompactification by weights on Bergman spaces. Journal of Mathematical Analysis and Applications. 2022. Vol: 513. Núm: 2. https://doi.org/10.1016/j.jmaa.2022.126212.
Lefévre, Pascal;Li, Daniel;Queffélec, Harvé;Rodriguez-Piazza, Luis:
Comparison of singular numbers of composition operators on dioerent Hilbert spaces of analytic functions. Journal of Functional Analysis. 2021. Vol: 280. Núm: 3. https://doi.org/10.1016/j.jfa.2020.108834.
Lacruz, Miguel;León-Saavedra, Fernando;Petrovic, Srdjan;Rodriguez-Piazza, Luis:
Extended eigenvalues of composition operators. Journal of Mathematical Analysis and Applications. 2021. Vol: 504. Núm: 2. https://doi.org/10.1016/j.jmaa.2021.125427.
Lefévre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Compactidcation, and beyond, of composition operators on Hardy spaces by weights. Annales Fennici Mathematici. 2021. Vol: 46. Núm: 1. Pág. 43-57. https://afm.journal.fi/article/view/109343.
Aguilar, Tanausú;Manuel D. Contreras;Rodriguez-Piazza, Luis:
Integration Operators in Average Radial Integrability Spaces of Analytic Functions. Mediterranean Journal of Mathematics. 2021. Vol: 18. Núm: 3. 10.1007/s00009-021-01774-w.
Bailleul, Maxime;Lefévre, Pascal;Rodriguez-Piazza, Luis:
Hardy-Orlicz spaces of Dirichlet series: an interpolation problem on abscissae of convergence.. International Mathematics Research Notices. 2021. Vol: 19. Pág. 14743-14760. https://doi.org/10.1093/imrn/rnz242.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
An extremal composition operator on the Hardy space of the bidisk with small approximation numbers. Journal of Approximation Theory. 2020. Vol: 252. Núm: 105363. https://doi.org/10.1016/j.jat.2019.105363.
Lacruz, Miguel;Rodriguez-Piazza, Luis:
Localizing algebras and diagonal operators. Quaestiones Mathematicae. 2020. Vol: 43. Núm: 5-6. Pág. 697-730. https://doi.org/10.2989/16073606.2019.1605418.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Approximation and entropy numbers of composition operators. Concrete Operators. 2020. Vol: 7. Núm: 1. Pág. 166-179. https://doi.org/10.1515/conop-2020-0106.
Lacruz, Miguel;León-Saavedra, Fernando;Petrovic, Srdjan;Rodriguez-Piazza, Luis:
The double commutant property for composition operators. Collectanea Mathematica. 2019. Vol: 70. Núm: 3. Pág. 501-532.
Arévalo-barco, Irina;Manuel D. Contreras;Rodriguez-Piazza, Luis:
Semigroups of composition operators and integral operators on mixed norm spaces. . Revista Matemática Complutense. 2019. Vol: 32 . Pág. 767-798. DOI 10.1007/s13163-019-00300-7.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Composition operators with surjective symbol and small approximation numbers. North-Western European Journal of Mathematics. 2019. Vol: 5. Pág. 1-19.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Some examples of composition operators and their approximation numbers on the Hardy space of the bidisk. American Mathematical Society. Transactions. 2019. Vol: 372. Núm: 4. Pág. 2631-2658. https://doi.org/10.1090/tran/7692 .
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Pluricapacity and approximation numbers of composition operators. Journal of Mathematical Analysis and Applications. 2019. Vol: 474. Núm: 2. Pág. 1576-1600. https://doi.org/10.1016/j.jmaa.2019.02.041.
Mastylo, Mieczyslaw;Rodriguez-Piazza, Luis:
Convergence almost everywhere of multiple Fourier series over cubes. American Mathematical Society. Transactions. 2018. Vol: 370. Núm: 3. Pág. 1629-1659. https://doi.org/10.1090/tran/7172 .
Lefèvre, Pascal;Rodriguez-Piazza, Luis:
Absolutely summing Carleson embeddings on Hardy spaces. Advances in Mathematics. 2018. Vol: 340. Pág. 528-587. https://doi.org/10.1016/j.aim.2018.10.012.
Lacruz, Miguel;León-Saavedra, Fernando;Petrovic, Srdjan;Rodriguez-Piazza, Luis:
Composition operators with a minimal commutant. Advances in Mathematics. 2018. Vol: 328. Pág. 890-927.
Bayart, Frédéric;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Approximation numbers of composition operators on the Hardy and Bergman spaces of the ball and of the polydisk. Mathematical Proceedings of the Cambridge Philosophical Society. 2018. Vol: 165. Núm: 1. Pág. 69-91. https://doi.org/10.1017/S0305004117000263.
Lechner, Gandalf;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Approximation numbers of weighted composition operators.. Journal of Functional Analysis. 2018. Vol: 274. Núm: 7. Pág. 1928-1958. https://doi.org/10.1016/j.jfa.2018.01.010.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Approximation Numbers of Composition Operators on the Hardy Space of the Infinite Polydisk. Integral Equations and Operator Theory. 2017. Vol: 89. Pág. 493-505. doi.org/10.1007/s00020-017-2408-4.
Lefèvre, Pascal;Rodriguez-Piazza, Luis:
Plongements de Carleson absolument sommants. Academie des Sciences. Comptes Rendus. Mathematique. 2016. Vol: 354. Núm: 12. Pág. 1209-1213. https://doi.org/10.1016/j.crma.2016.10.010.
Constantin, Peter;Córdoba, Diego ;Gancedo-Garcia, Francisco;Rodriguez-Piazza, Luis;Strain, Robert M.:
On the Muskat problem: Global in time results in 2D and 3D. American Journal of Mathematics. 2016. Vol: 138. Núm: 6. Pág. 1455-1494 . 10.1353/ajm.2016.0044.
Li, Daniel;Queffélec, Hervé ;Rodriguez-Piazza, Luis:
Approximation numbers of composition operators on Hp. Concrete Operators. 2015. Vol: 2. Pág. 98-109. https://doi.org/10.1515/conop-2015-0005.
Mastylo, Mieczyslaw;Rodriguez-Piazza, Luis:
Carleson measures and embeddings of abstract Hardy spaces into function lattices. Journal of Functional Analysis. 2015. Vol: 268. Núm: 12. Pág. 902-928. https://doi.org/10.1016/j.jfa.2014.11.004.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Approximation numbers of composition operators on the Dirichlet space. Arkiv foer Matematik. 2015. Vol: 53. Núm: 1. Pág. 155-175. DOI: 10.1007/s11512-013-0194-z.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Two results on composition operators on the Dirichlet space. Journal of Mathematical Analysis and Applications. 2015. Vol: 426. Núm: 2. Pág. 734-746. https://doi.org/10.1016/j.jmaa.2015.01.062.
Lacruz, Miguel;Rodriguez-Piazza, Luis:
Localizing algebras and invariant subspaces. Journal of Operator Theory. 2014. Vol: 72. Núm: 2. Pág. 429-449. 10.7900/jot.2013may10.1995.
Guillermo P. Curbera;Rodriguez-Piazza, Luis:
A Banach function space X for which all operators from lp to X are compact. Functiones et Approximatio Commentarii Mathematici. 2014. Vol: 50. Pág. 233-249. doi:10.7169/facm/2014.50.2.3.
Lefèvre, Pascal;Rodriguez-Piazza, Luis:
Finitely strictly singular operators in harmonic analysis and function theory. Advances in Mathematics. 2014. Vol: 255. Pág. 119-152. http://dx.doi.org/10.1016/j.aim.2013.12.034.
Ricker, Werner;Rodriguez-Piazza, Luis:
Absolutely summing multiplier operators in Lp(G) for p>2. Proceedings of the American Mathematical Society. 2014. Vol: 142. Núm: 12. Pág. 4305-4313. https://doi.org/10.1090/S0002-9939-2014-12179-4 .
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
A spectral radius type formula for approximation numbers of composition operators. Journal of Functional Analysis. 2014. Vol: 267. Núm: 12. Pág. 4753-4774. https://doi.org/10.1016/j.jfa.2014.09.008.
Okada, Susumu;Ricker, Werner;Rodriguez-Piazza, Luis:
Operator ideal properties of the integration map of a vector measure. Indagationes Mathematicae. 2014. Vol: 25. Núm: 2. Pág. 315-340. http://dx.doi.org/10.1016/j.indag.2012.11.008,.
Lacruz, Miguel;Rodriguez-Piazza, Luis:
Function algebras with a strongly precompact unit ball. Journal of Functional Analysis. 2013. Vol: 265. Núm: 7. Pág. 1357-1366. http://dx.doi.org/10.1016/j.jfa.2013.05.035.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Infinitesimal Carleson Property for Weighted Measures Induced by Analytic Self-Maps of the Unit Disk. Complex Analysis and Operator Theory. 2013. Vol: 7. Núm: 4. Pág. 1371-1387. 10.1007/s11785-012-0244-8.
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Estimates for approximation numbers of some classes of composition operators on the Hardy space. Annales Academiae Scientiarum Fennicae. Mathematica. 2013. Vol: 38. Núm: 2. Pág. 547-564. doi:10.5186/aasfm.2013.3823.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Some new properties of composition operators associated with lens maps. Israel Journal of Mathematics. 2013. Vol: 195. Núm: 2. Pág. 801-824. 10.1007/s11856-012-0164-3.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé ;Rodriguez-Piazza, Luis:
Compact composition operators on the Dirichlet space and capacity of sets of contact points . Journal of Functional Analysis. 2013. Vol: 264. Núm: 4. Pág. 895-919. http://dx.doi.org/10.1016/j.jfa.2012.12.004.
Lefevre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Compact composition operators on Bergman-Orlicz spaces. American Mathematical Society. Transactions. 2013. Vol: 365 . Núm: 8. Pág. 3943-3970. http://dx.doi.org/10.1090/S0002-9947-2013-05922-3 .
Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
On approximation numbers of composition operators. Journal of Approximation Theory. 2012. Vol: 164. Núm: 4. Pág. 431-459. http://dx.doi.org/10.1016/j.jat.2011.12.003.
Carro, María Jesús;Masty¿o, Mieczys¿aw;Rodriguez-Piazza, Luis:
Almost Everywhere Convergent Fourier Series. Journal of Fourier Analysis and Applications. 2012. Vol: 18. Núm: 2. Pág. 266-286. DOI: 10.1007/s00041-011-9199-9.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Some revisited results about composition operators on Hardy spaces. Revista Matemática Iberoamericana. 2012. Vol: 28. Núm: 1. Pág. 57-76. 10.4171/RMI/666 .
Okada, Susumu;Ricker, Werner;Rodriguez-Piazza, Luis:
Operator ideal properties of vector measure with finite variation. Studia Mathematica. 2011. Vol: 205. Núm: 3. Pág. 215-249. 10.4064/sm205-3-2.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Thin sets of integers in Harmonic Analysis and p-stable random Fourier series. Journal d'Analyse Mathématique. 2011. Vol: 115. Pág. 187-211. 10.1007/s11854-011-0027-6.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
Nevanlinna counting function and Carleson function of analytic maps. Mathematische Annalen. 2011. Vol: 351. Núm: 2. Pág. 305-326. 10.1007/s00208-010-0596-1.
Lefèvre, Pascal;Li, Daniel;Queffélec, Hervé;Rodriguez-Piazza, Luis:
The canonical injection of the Hardy-Orlicz space H^Psi into the Bergman¿Orlicz space B^Psi. Studia Mathematica. 2011. Vol: 202. Núm: 2. Pág. 123-144. 10.4064/sm202-2-2.
Okada, Susumu;Ricker, Werner;Rodriguez-Piazza, Luis:
Absolutely summnig convolution operators in Lp(G). Proceedings of the London Mathematical Society. 2011. Vol: 102. Núm: 5. Pág. 843-882. 10.1112/plms/pdq042.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES. Memoirs of the American Mathematical Society. 2010. Vol: 207. Núm: 974. Pág. 1-74. 10.1090/S0065-9266-10-00580-6 .
Lefevre-, Pascal;Rodriguez-Piazza, Luis:
INVARIANT MEANS AND THIN SETS IN HARMONIC ANALYSIS WITH APPLICATIONS TO PRIME NUMBERS. Journal of the London Mathematical Society. 2009. Vol: 80. Pág. 72-84. 10.1112/jlms/jdp016 .
Lacruz, Miguel;Rodriguez-Piazza, Luis:
STRONGLY COMPACT NORMAL OPERATORS. Proceedings of the American Mathematical Society. 2009. Vol: 137. Núm: 8. Pág. 2623-2630.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
COMPACT COMPOSITION OPERATORS ON $H^2$ AND HARDY-ORLICZ SPACES.. Journal of Mathematical Analysis and Applications. 2009. Pág. 360-371. http://dx.doi.org/10.1016/j.jmaa.2009.01.004,.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
ACRITERION OF WEAK COMPACTNESS FOR OPERATORS ON SUBSPACES OF ORLICZ SPACES.. Journal of Function Spaces and Applications. 2008. Vol: 6. Núm: 3. Pág. 277-292. doi:10.1155/2008/107568.
Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
ON SOME RANDOM THIN SETS OF INTEGERS. Proceedings of the American Mathematical Society. 2008. Vol: 136. Núm: 1. Pág. 141-150.
Rodriguez-Piazza, Luis;Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve:
SOME EXAMPLES OF COMPACT COMPOSITION OPERATORS ON H2. Journal of Functional Analysis. 2008. Vol: 255. Núm: 11. Pág. 3098-3124.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
WEAK COMPACTNESS AND ORLICZ SPACES. Colloquium Mathematicum. 2008. Vol: 112. Pág. 23-32. 10.4064/cm112-1-02.
Li-,Daniel;Lefevre-, Pascal;Queffelec-, Herve;Rodriguez-Piazza, Luis:
OPÉRATEURS DE COMPOSITION SUR LES ESPACES DE HARDY-ORLICZ. Academie des Sciences. Comptes Rendus. Mathematique. 2007. Vol: 344. Núm: 1. Pág. 5-10.
Lefevre-, Pascal;Rodriguez-Piazza, Luis:
ON THE STRUCTURE OF SPACES OF UNIFORMLY CONVERGENT FOURIER SERIES. Mathematische Annalen. 2007. Vol: 338. Núm: 1. Pág. 11-31.
Jefferies-,Brian;Okada-, Susumu;Rodriguez-Piazza, Luis:
LP-VALUED MEASURES WITHOUT FINITE X-SEMIVARIATION FOR 2 < P < ?. Quaestiones Mathematicae. 2007. Vol: 30. Núm: 4. Pág. 437-449.
Lacruz-, Miguel;Rodriguez-Piazza, Luis;Lomonosov-,Victor:
STRONGLY COMPACT ALGEBRAS. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales - Serie A: Matemáticas. 2006. Vol: 100. Núm: 1-2. Pág. 191-208.
Lefevre-, Pascal;Rodriguez-Piazza, Luis:
THE UNION OF A RIESZ SET AND A LUST-PIQUARD SET IS A RIESZ SET. Journal of Functional Analysis. 2006. Vol: 233. Núm: 2. Pág. 545-560.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
SOME TRANSLATION-INVARIANT BANACH FUNCTION SPACES WHICH CONTAIN C(0). Studia Mathematica. 2004. Vol: 163. Núm: 2. Pág. 137-155.
Lefevre-, Pascal;Rodriguez-Piazza, Luis:
P-RIDER SETS ARE Q-SIDON SETS. Proceedings of the American Mathematical Society. 2003. Vol: 131. Núm: 6. Pág. 1829-1838.
Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
SOME NEW THIN SETS OF INTEGERS IN HARMONIC ANALYSIS. Journal d'Analyse Mathématique. 2002. Vol: 86. Pág. 105-138.
Lefevre-, Pascal;Li-,Daniel;Queffelec-, Herve;Rodriguez-Piazza, Luis:
LACUNARY SETS AND FUNCTION SPACES WITH FINITE COTYPE. Journal of Functional Analysis. 2002. Vol: 188. Núm: 1. Pág. 272-291.
Okada-, Susumu;Ricker-, W J;Rodriguez-Piazza, Luis:
COMPACTNESS OF THE INTEGRATION OPERATOR ASSOCIATED WITH A VECTOR MEASURE. Studia Mathematica. 2002. Vol: 150. Núm: 2. Pág. 133-149.
Rodriguez-Piazza, Luis;Romero-Moreno, Maria Del Carmen:
THE BOUNDED VECTOR MEASURE ASSOCIATED TO A CONICAL MEASURE AND PETTIS DIFFERENTIABILITY. Journal of the Australian Mathematical Society. Series A. Pure mathematics and statistics. 2001. Vol: 70. Pág. 10-36.
Freniche-Ibañez, Francisco J.;García-Vázquez, Juan Carlos;Rodriguez-Piazza, Luis:
TENSOR PRODUCTS AND OPERATORS IN SPACES OF ANALYTIC FUNCTIONS. Journal of the London Mathematical Society. 2001. Vol: 63. Pág. 705-720.
Rodriguez-Piazza, Luis;Romero-Moreno, Maria Del Carmen:
OPERATOR IDEAL NORMS ON L-P. American Mathematical Society. Transactions. 2000. Vol: 352. Núm: 1. Pág. 379-395.
Rodriguez-Piazza, Luis;Romero-Moreno, Maria Del Carmen:
PARALLELEPIPEDS AND DECOMPOSITION OF RANGES OF VECTOR MEASURES IN BANACH SPACES. Mathematische Nachrichten. 2000. Vol: 212. Pág. 135-154.
Freniche-Ibañez, Francisco J.;García-Vázquez, Juan Carlos;Rodriguez-Piazza, Luis:
THE FAILURE OF FATOU'S THEOREM ON POISSON INTEGRALS OF PETTIS INTEGRABLE FUNCTIONS. Journal of Functional Analysis. 1998. Vol: 160. Núm: 1. Pág. 28-41.
Rodriguez-Piazza, Luis;Romero-Moreno, Maria Del Carmen:
CONICAL MEASURES AND PROPERTIES OF A VECTOR MEASURE DETERMINED BY ITS RANGE. Studia Mathematica. 1997. Vol: 125. Núm: 3. Pág. 255-270.
Rodriguez-Piazza, Luis:
EVERY SEPARABLE BANACH SPACE IS ISOMETRIC TO A SPACE OF CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTIONS. Proceedings of the American Mathematical Society. 1995. Vol: 123. Núm: 12. Pág. 3649-3654.
Rodriguez-Piazza, Luis:
DERIVABILITY, VARIATION AND RANGE OF A VECTOR MEASURE. Studia Mathematica. 1995. Vol: 112. Núm: 2. Pág. 165-187.
Piñeiro-Gómez, Cándido;Rodriguez-Piazza, Luis:
BANACH SPACES IN WHICH EVERY COMPACT LIES INSIDE THE RANGE OF A VECTOR MEASURE. Proceedings of the American Mathematical Society. 1992. Vol: 114. Pág. 505-517.
Arias De Reyna-Martínez, Juan;Rodriguez-Piazza, Luis:
FINITE METRIC-SPACES NEEDING HIGH DIMENSION FOR LIPSCHITZ EMBEDDINGS IN BANACH-SPACES. Israel Journal of Mathematics. 1992. Vol: 79. Núm: 1. Pág. 103-111.
Arias De Reyna-Martínez, Juan;Diestel-,Joseph;Lomonosov-,Victor;Rodriguez-Piazza, Luis:
SOME OBSERVATIONS ABOUT THE SPACE OF WEAKLY CONTINUOUS FUNCTIONS FROM A COMPACT SPACE INTO A BANACH SPACE. Quaestiones Mathematicae. 1992. Vol: 15. Pág. 415-425.
Rodriguez-Piazza, Luis:
THE RANGE OF A VECTOR MEASURE DETERMINES ITS TOTAL VARIATION. Proceedings of the American Mathematical Society. 1991. Vol: 111. Pág. 205-214.
Rodriguez-Piazza, Luis:
CARACTACC ERISATION DES ENSEMBLES $P$-SIDON P.S.. Comptes Rendus de l'Académie des Sciences. Série I, Mathématique. 1987. Vol: 305. Pág. 237-240.