Anguiano, María;Suárez-Grau, Francisco J.:
Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain. Zeitschrift für Angewandte Mathematik und Physik. 2024. Vol: 75. Núm: 28. https://doi.org/10.1007/s00033-023-02169-5.
Anguiano, María:
On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media. Mediterranean Journal of Mathematics. 2023. Vol: 20. Núm: 124. https://doi.org/10.1007/s00009-023-02333-1.
Anguiano, María;Suárez-Grau, Francisco J.:
Sharp pressure estimates for the Navier-Stokes system in thin porous media. Bulletin of the Malaysian Mathematical Sciences Society. 2023. Vol: 46. Núm: 117. Pág. 1-31. https://doi.org/10.1007/s40840-023-01514-1.
Anguiano, María;Bonnivard, Matthieu;Suárez-Grau, Francisco J.:
Carreau law for non-Newtonian fluid flow through a thin porous media. Quarterly journal of Mechanics and Applied Mathematics. 2022. Vol: 75. Núm: 1. Pág. 1-27. https://doi.org/10.1093/qjmam/hbac004.
Anguiano, María:
Reaction-diffusion equation on thin porous media. Bulletin of the Malaysian Mathematical Sciences Society. 2021. Vol: 44. Pág. 3089-3110. https://doi.org/10.1007/s40840-021-01103-0.
Anguiano, María;Suárez-Grau, Francisco J.:
Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium. Mediterranean Journal of Mathematics. 2021. Vol: 18. Núm: 175. http://doi.org/10.1007/s00009-021-01814-5.
Anguiano, María:
Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media . Mediterranean Journal of Mathematics. 2020. Vol: 17. Núm: 18. https://doi.org/10.1007/s00009-019-1459-y.
Anguiano, María;Bunoiu, Renata:
Homogenization of Bingham Flow in thin porous media . Networks and Heterogeneous Media. 2020. Vol: 15. Núm: 1. Pág. 87-110. http://dx.doi.org/10.3934/nhm.2020004.
Anguiano, María:
Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media . Zeitschrift für Angewandte Mathematik und Mechanik. 2020. Vol: 100. Núm: 10. https://doi.org/10.1002/zamm.202000088.
Anguiano, María:
Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure . European Journal Of Applied Mathematics. 2019. Vol: 30. Núm: 2. Pág. 248-277. https://doi.org/10.1017/S0956792518000049.
Anguiano, María;Suárez-Grau, Francisco J.:
Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary . IMA Journal of Applied Mathematics. 2019. Vol: 84. Núm: 1. Pág. 63-95. https://doi.org/10.1093/imamat/hxy052.
Anguiano, María;Suárez-Grau, Francisco J.:
Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media. 2019. Vol: 14. Núm: 2. Pág. 289-316. http://dx.doi.org/10.3934/nhm.2019012.
Anguiano, María:
Uniform boundedness of the attractor in $H^2$ of a non-autonomous epidemiological system. Annali di Matematica Pura ed Applicata. 2018. Vol: 197. Núm: 6. Pág. 1729-1737. https://doi.org/10.1007/s10231-018-0745-9.
Anguiano, María;Suárez-Grau, Francisco J.:
Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium. Communications in Mathematical Sciences. 2018. Vol: 16. Núm: 1. Pág. 273-292. https://dx.doi.org/10.4310/CMS.2018.v16.n1.a13.
Anguiano, María;Suárez-Grau, Francisco J.:
The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium . Mediterranean Journal of Mathematics. 2018. Vol: 15. Núm: 45. https://doi.org/10.1007/s00009-018-1086-z.
Anguiano, María;Suárez-Grau, Francisco J.:
Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure. Zeitschrift für Angewandte Mathematik und Physik. 2017. Vol: 68. Núm: 52. https://doi.org/10.1007/s00033-017-0797-5.
Anguiano, María:
Existence and estimation of the Hausdorff dimension of attractors for an epidemic model. Mathematical Methods in the Applied Sciences. 2017. Vol: 40. Núm: 4. Pág. 857-870. https://doi.org/10.1002/mma.4008.
Abdelli, Mama;Anguiano, María;Haraux, Alain:
Existence, uniqueness and global behavior of the solutions to some nonlinear vector equations in a finite dimensional Hilbert space. Nonlinear Analysis, Theory, Methods and Applications. 2017. Vol: 161. Pág. 157-181. https://doi.org/10.1016/j.na.2017.06.001.
Anguiano, María:
On the non-stationary non-Newtonian flow through a thin porous medium. Zeitschrift für Angewandte Mathematik und Mechanik. 2017. Vol: 97. Núm: 8. Pág. 895-915. https://doi.org/10.1002/zamm.201600177.
Anguiano, María;Haraux, Alain:
The $varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations and Control Theory. 2017. Vol: 6. Núm: 3. Pág. 345-356. http://dx.doi.org/10.3934/eect.2017018.
Anguiano, María:
Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure. Mathematical Methods in the Applied Sciences. 2017. Vol: 40. Núm: 13. Pág. 4738-4757. https://doi.org/10.1002/mma.4341.
Anguiano, María;Suárez-Grau, Francisco J.:
Homogenization of an incompressible non-Newtonian flow through a thin porous medium. Zeitschrift für Angewandte Mathematik und Physik. 2017. Vol: 68. Núm: 45. https://doi.org/10.1007/s00033-017-0790-z.
Anguiano, María:
Darcy's laws for non-stationary viscous fluid flow in a thin porous medium. Mathematical Methods in the Applied Sciences. 2017. Vol: 40. Núm: 8. Pág. 2878-2895. https://doi.org/10.1002/mma.4204.
Anguiano, María:
$H^2$-boundedness of the pullback attractor for the non-autonomous SIR equations with diffusion. Nonlinear Analysis, Theory, Methods and Applications. 2015. Vol: 113. Pág. 180-189. https://doi.org/10.1016/j.na.2014.10.008.
Anguiano, María:
Pullback attractors for a reaction-diffusion equation in a general nonempty open subset of $R^N$ with non-autonomous forcing term in $H^{-1}$. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2015. Vol: 25. Núm: 12. Pág. 1-10. https://doi.org/10.1142/S0218127415501643.
Anguiano, María:
Attractors for a non-autonomous Liénard equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2015. Vol: 25. Núm: 2. Pág. 1-11. https://doi.org/10.1142/S0218127415500327.
Anguiano, María;Marín-Rubio, Pedro;Real-Anguas, José:
Regularity results and exponential growth for pullback attractors of a non-autonomous reaction-diffusion model with dynamical boundary conditions. Nonlinear Analysis: Real World Applications. 2014. Vol: 20. Pág. 112-125. https://doi.org/10.1016/j.nonrwa.2014.05.003.
Anguiano, María;Caraballo-Garrido, Tomás:
Asymptotic behaviour of a nonautonomous Lorenz-84 system . Discrete and Continuous Dynamical Systems. Series A. 2014. Vol: 34. Núm: 10. Pág. 3901-3920. http://dx.doi.org/10.3934/dcds.2014.34.3901.
Anguiano, María;Kloeden-, Peter Eris:
Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure and Applied Analysis. 2014. Vol: 13. Núm: 1. Pág. 157-173. http://dx.doi.org/10.3934/cpaa.2014.13.157.
Anguiano, María;Caraballo-Garrido, Tomás;Real-Anguas, José;Valero-Cuadra, José:
Pullback attractors for a nonautonomous integro-differential equation with memory in some unbounded domains. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2013. Vol: 23. Núm: 3. Pág. 1-24. https://doi.org/10.1142/S0218127413500429.
Anguiano, María;Morillas, Francisco;Valero-Cuadra, José:
On the Kneser property for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term. Nonlinear Analysis, Theory, Methods and Applications. 2012. Vol: 75. Núm: 4. Pág. 2623-2636. https://doi.org/10.1016/j.na.2011.11.007.
Anguiano, María;Marín-Rubio, Pedro;Real-Anguas, José:
Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions. Journal of Mathematical Analysis and Applications. 2011. Vol: 383. Pág. 608-618. https://doi.org/10.1016/j.jmaa.2011.05.046.
Anguiano, María;Caraballo-Garrido, Tomás;Real-Anguas, José:
An exponential growth condition in $H^2$ for the pullback attractor of a non-autonomous reaction-diffusion equation. Nonlinear Analysis, Theory, Methods and Applications. 2010. Vol: 72. Núm: 11. Pág. 4071-4075. https://doi.org/10.1016/j.na.2010.01.038.
Anguiano, María;Caraballo-Garrido, Tomás;Real-Anguas, José:
$H^2$-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation. Nonlinear Analysis, Theory, Methods and Applications. 2010. Vol: 72. Núm: 2. Pág. 876-880. https://doi.org/10.1016/j.na.2009.07.027.
Anguiano, María;Kloeden-, Peter Eris;Lorenz-,Thomas:
Asymptotic behaviour of nonlocal reaction-diffusion equations. Nonlinear Analysis, Theory, Methods and Applications. 2010. Vol: 73. Núm: 9. Pág. 3044-3057. https://doi.org/10.1016/j.na.2010.06.073.
Anguiano, María;Caraballo-Garrido, Tomás;Real-Anguas, José:
Existence of Pullback Attractor for a Reaction-Diffusion Equation in Some Unbounded Domains With Non-Autonomous Forcing Term in $H^{-1}$. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2010. Vol: 20. Núm: 9. Pág. 2645-2656. https://doi.org/10.1142/S021812741002726X.
Anguiano, María:
Pullback attractor for a non-autonomous reaction-diffusion equation in some unbounded domains. Boletín de la Sociedad Española de Matemática Aplicada. 2010. Vol: 51. Núm: 1. Pág. 9-16. https://doi.org/10.1007/BF03322548.
Anguiano, María;Caraballo-Garrido, Tomás;Real-Anguas, José;Valero-Cuadra, José:
Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniquen. Discrete and Continuous Dynamical Systems. Series B. 2010. Vol: 14. Núm: 2. Pág. 307-326. http://dx.doi.org/10.3934/dcdsb.2010.14.307.